「学生数学」“活动—探究—归纳”教学模式的探索

互联网 2014-07-01 17:25:52

今天,山东创新网分享「学生数学」“活动—探究—归纳”教学模式的探索。



【模式内涵】是以建构主义理论及新课改理论为指导,在教师有效的引导下,以“活动”为依托,学生根据教师创设的问题情境与教师提供的定向指导进行学具操作、画图等活动,将数学知识的抽象性和学生思维的形象性之间架起的一座“桥梁”,以达到“几何直观”的目的。在此基础上给与学生充分的时间和空间,以“探究”为主线,让学生积极主动地探讨解决问题的方法,教师适时地引导和点拨,使学生形成思维表象。再通过恰当的方法归纳概括表述探究的成果,发现数学结论的一种教学模式。
【模式特点】以“学生活动和自主探究”为中心,引导学生通过活动实现由抽象到直观的过渡,同时重视学生自主探索,发现、分析和解决问题的过程,使学生亲身体验研究数学的过程和方法,并能自主归纳概括出结论。
【应用范围】“操作——探究——归纳”教学模式在小学数学阶段使用非常广泛。教学加、减、乘、除四则运算的“意义模型”时,常常用到该模式;构建“平均分”、“○比○多(少)几”、“△是△的几倍”等数学模型时,也时常用到该模式;运用加法、减法、乘法、除法解决“简单应用问题”时常用此模式;探究“用连减解决问题”、“用连乘解决问题”、“用乘加(减)解决问题”等复合应用问题的解题思路时也常用。

【模式流程】


【案例】
下面,结合《用连减解决问题》一课谈一下如何借助这一教学模式,帮助学生构建数学模型。

一、创设问题情境,激发建模兴趣。
数学模型都是具有现实生活背景的,要建模首先对生活原型有充分的了解,创设与学生的生活、知识背景密切相关,并且感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程。教学中,“问题情境”创设如下:
播放《小猴下山》的动画片,调动学生的积极性,活跃课堂气氛。以小猴子再次下山为背景,创设小猴子摘桃子的情境。
这一情境符合学生的兴趣和需求,且与他们的思维、想象力相协调,学生在这样的情境中,很快激起强烈的情绪,形成无意识的心理倾向,情不自禁地投入操作活动中。

二、引出数学问题,培育建模基础。
是在教师的引导下,将生活问题数学化,提出相关的数学问题。这是一个从生活到数学、从具体到抽象的过程。它不仅有利于密切数学与生活的联系,而且有利于培养学生抽象的概括能力,让学生学会从数学的角度提出问题和理解问题,发展学生的应用意识。这就要求我们善于在具体问题情境中捕捉时机,加以引导,抽象概括出相关的数学问题,构建起简单的数学模型,为后面解决问题提供一个明确的目标和科学的导向。
教学中,“问题情境的研读”如下:
师:通过观察你能发现哪些数学信息?
信息:树上一共有24个桃子,第一次摘了8个桃子,第二次摘了6个桃子。
师:根据这些信息,你能提出一些数学问题吗?
问题1:一共摘了几个桃子?
问题2:树上还剩几个桃子?
……
上述教学片段,学生经历了数学问题生活化的过程。通过“根据这些数学信息,你能提出哪些数学问题?”,引导学生“发现数学信息——探寻信息之间的关系——提出数学问题”帮助学生顺利实现“生活问题”到“数学问题”的转化,培育建模基础。

三、借助操作活动,感知数学模型。
学生对数学知识的学习,是一个复杂的过程,也是一个主动构建的过程。只有学生将间接经验转化为头脑中的相应的认知结构时,学生自主建构数学建模才能成为一种可能,而操作活动对于知识的构建起着积极主动的作用。通过操作活动,将抽象问题变得形象具体,为学生积极探究,主动获取知识提供机会;通过操作活动,借助感性认识,促进理性认识,进一步理清思路、澄清认识。所以教师要创造条件,让学生借助操作活动这一平台,从具体到抽象、从感性到理性建构新知识,引导学生恰到好处地运用感性材料,为建立清晰准确的数学模型打下良好的基础。教学中,此过程如下:
师:同学们你们能自己分析并解决这个问题吗?如果遇到困难,你可以借助手中的学具,或者画一画来帮助你解决这个问题。
生选择自己喜欢的方式动手尝试解决问题。
生多会选择画一画或摆一摆的方法。
这一环节的教学,通过学生的操作活动,达到化难为易,化抽象为直观的目的,帮助学生直观形象地理清数量之间的关系,架起信息与信息之间、信息与问题之间的内在联系,从直观的形中去领悟抽象的数学结论,促使学生有效建构数学模型。

四、自主解决问题,构建数学模型。
1.学生尝试解决,换起旧知模型。
依据构建主义的观点,知识必须由学生基于自身的经验,构建新的数学知识和掌握数学方法。只有旧知模型被调用,才能为构建更高一级的法则模型发挥重要作用。随着知识的不断更新,学生头脑中的认知结构不断得到重组优化,旧模型往往被具有更“上位”的新模型所代替或统一,使得数学模型更具有了概括性的特征。教学中,设计如下:
学生尝试解决的过程中,出现的解法:
方法一:24-8=16(个) 16-6=10(个)
方法二:24-8-6=10(个)
师:这两种算法有什么相同点和不同点?
生分析比较,唤起旧知模型。
这一环节的教学,通过老师的追问,唤起学生对旧知模型——“总数-一部分-另一部分=还剩多少”的回忆,既激活学生已有的认知经验,了解学生的学习起点,又帮助学生准确把握新、旧问题的衔接点,找准“新问题”的生长点,有利于运用迁移规律,以旧引新。
2. 学生创造符号,感知新知模型。
数学教学,不仅要让学生掌握知识,而且要让学生去反思知识,诘问知识,批判知识,以此来发展学生的智慧和个性。因此在学生构建出连减问题的旧知模型后,还要组织学生将数学模型进行适度的生成、拓展和重塑,派生出新的数学模型。教学时,设计如下:
方法三:8+6=14(个) 24-14=10(个)
师:可以把这种方法改写成一道综合算式吗?
出现错误解法:24-8+6=10(个)
教师鼓励学生创造一个符号,把8+6放进去让它先算。通过学生努力创造出小括号,同时产生新的数学模型。
学生的学习过程,既是一个认知过程,又是一个探索过程,将学生学习由“吸收——储存——再现”转化为“探索——研讨——创造”。此环节中,通过学生思维的碰撞,发现矛盾,在教师的引导下,学生动脑创造符号,见证一个新符号的诞生过程,初步构建出“总数-(两部分的和)=还剩多少”这一新知模型。

五、重视思想方法,优化建模过程。
不管是数学概念的建立、数学规律的发现、还是数学问题的解决,核心问题都在于数学思想方法的运用,它是数学模型的灵魂。重视数学思想方法的提炼与体验,可以催化数学模型的建构,提升建构的理性高度。教学时,此过程如下:
教师引导学生采用综合、分析法优化构建数学模型的过程。

这一环节,教师通过引导学生进行观察与比较、抽象与概括,借助综合、分析法提炼出连减问题模型背后所蕴含着的结构性知识,并运用形式化的数学符号优化连减问题的数学模型。

六、运用数学模型,解决实际问题。
新的模型通过解释、评价自然地纳入学生已有知识体系中,并化作自己的解题经验,这是认识上的飞跃。让学生将求得的数学模型放到生活中检验,用建立的数学模型来解决实际问题,体会数学模型的应用价值,体验所学知识的用途和益处,这是建模的根本目的。
教学中,从以下几个层次运用数学模型:
1. 基本练习,巩固新知——运西瓜。
2.拓展练习,揭示本质——掰玉米。
玉米地里有36个玉米,第一次摘走了12个,第二次摘走了8个,地里还有多少玉米?
3.延伸练习,灵活运用——结合生活,编用连减解决的问题.
通过由易到难的梯度训练,让学生对连减问题的数学模型得到初步的巩固和训练,形成一个完整的知识整体。

【简要评述】
所谓的数学建模就是对实际问题的一种数学表述,是对现实原型的概括,是数学基础知识与数学实际应用之间的桥梁,简而言之,就是将当前的问题转化为数学模型。连减问题的数学模型,既“总数-一部分-另一部分=还剩多少”和“总数-(两部分的和)=还剩多少”,“总数-一部分-另一部分=还剩多少”这一数学模型在前面的学习中学生已经掌握,属于旧知。本节课的关键是构建“总数-(两部分的和)=还剩多少”这一数学模型。为了构建这一数学模型,本节课采用了“活动——探究——归纳”这一教学模式,通过学生自主的学具操作,独立尝试,将数学知识的抽象性和学生思维的形象性之间架起的一座“桥梁”,达到“几何直观”的目的,建立起连减问题的图画模型。再通过全班的交流,学生的思路进一步开放、优化,全班交流则成了展示成果的平台。在学生思维的碰撞中,教师点拨引导中,学生逐渐接近问题的本质,成功构建出连减问题的数学模型。再通过让学生运用模型解决问题,既巩固了数学知识,又提高了学生解决问题的能力。(东营市实验学校 徐宁)