电商用户行为数据「大数据源码」

互联网 2023-03-04 18:19:45

今天给大家普及一下电商用户行为数据「大数据源码」相关知识,最近很多在问电商用户行为数据「大数据源码」,希望能帮助到您。

项目介绍:

大数据技术已经迅速应用于商业并产生价值,通过数据分析来识别用户行为,建立以用户为中心的低成本快速增长,是一个企业必须具备的核心竞争力。 随着成本的大幅度增加,企业必须改变过去粗放型的营销和运营方式,特别是在市场营销、产品制造、销售以及未来的客户服务等各个方面向更加科学、高效的方向转变。

电商系统上线后,需要收集用户行为数据,通过大数据实时分析实现电商业务数字化运营。基于此强需求开发小象用户行为分析,兼容神策开源的埋点SDK完成终端行为上报,采用Nginx Flume kafka实现日志收集,采用Flink写入HDFS。

本开源项目内容包括nginx环境配置、Flume解密和日志格式处理、将明文数据存放到kafka的Topic下、Flink消费后将埋点数据存入HDFS的关键4步操作。为方便前期埋点的校验调优,在kafka环节,增加了埋点解析数据JSON格式存入MySQL。后续计划增加友盟和其他SDK厂商的埋点处理,以及业务系统日志的采集入库。

工程流程

完成数据采集技术构建和业务设计,在App、小程序的系统供应商配合下完成用户行为数据采集埋点,并基于埋点的数据构建线上用户行为标签和画像。

项目主要内容日志采集(Flume kafka)日志入库(Flink HDFS)设计思路

架构设计思路

所谓“埋点”,是数据采集领域(尤其是用户行为数据采集领域)的术语,指的是针对特定用户行为或事件进行捕获、处理和发送的相关技术及其实施过程。比如用户某个icon点击次数、观看某个视频的时长等等。

业务设计思路

埋点业务设计,首先需要根据业务分析明确采集的目标行为,进一步搞清楚应该在哪些地方埋什么样的点。过程中建议使用“事件模型( Event 模型)”来描述用户的各种行为,事件模型包括事件( Event )和用户( User )两个核心实体。 基于4W1H模型描述用户行为可将整个行为描述清楚,要点包括:是谁、什么时间、什么地点、以什么方式、干了什么。通过这两个实体结合在一起就可以清晰地描述清楚用户行为。

技术架构

SDK埋点采集行为数据来源终端包括iOS、安卓、Web、H5、微信小程序等。不同终端SDK采用对应平台和主流语言的SDK,埋点采集到的数据通过JSON数据以HTTP POST方式提交到服务端API。 服务端API由数据接入系统组成,采用Nginx来接收通过 API 发送的数据,并且将之写到日志文件上。使用Nginx实现高可靠性与高可扩展性。 对于Nginx打印到文件的日志,会由Flume的 Source 模块来实时读取Nginx日志,并由Channel模块进行数据处理,最终通过Sink模块将处理结果发布到 Kafka中。

软件完整架构第三方埋点SDK集成步骤引入SDK:在终端应用配置文件添加 SDK 依赖,不同终端引入方式会有差异,具体操作步骤将在后续SDK技术文档中体现。配置上报服务端API地址:用于设置SDK上报API的服务端地址。开启全埋点:SDK 可以自动采集一些用户行为,如 App 启动、退出、浏览页面、控件点击。初始化 SDK 时,通过SDK提供的初始化方法可以配置开启全埋点。API接入服务设计

不同渠道的埋点数据通过 HTTP API 发送给服务端API实现数据接入。 采用Nginx作为WEB容器接收客户端SDK发送的数据,并且将之写到日志文件上。使用 Nginx 主要是考虑到其高并发、高可靠性与高可扩展性。

用户行为采集场景

通过应用场景梳理,实现以场景规划埋点,用场景检验埋点。场景梳理可以抽象为三个层面:

通用基础场景:共性操作统一考虑重要操作场景:重要操作整体归因业务主流程场景:以业务线定义完整过程应用效果

想要源码,记得关注 转发 私信,私信回复【数据分析平台】