产品实时数据的价值与意义是什么「数据的商业价值有哪些」

互联网 2023-02-05 11:31:55

今天给大家普及一下产品实时数据的价值与意义是什么「数据的商业价值有哪些」相关知识,最近很多在问产品实时数据的价值与意义是什么「数据的商业价值有哪些」,希望能帮助到您。

将对产品实时数据做介绍,实时数据适用的场景以及存在的负面因素。在设计产品时,合理的运用“实时数据”,会为我们的产品带来更多的价值。

我们先来看下“百度统计”中,如果以数据时效性来划分字段的话,会得到什么结果?

通过对demo的体验,从时间维度上看,可以发现“应用概况”中字段有一些的区别。

例如昨日启动用户数、昨日点击次数等字段展示的数据,是昨日甚至昨日更早之前的数据进行一个统计。

而今日启动用户数、今日启动次数等,是对截止到当前的一个数据统计,从图片右上角可以发现当前时间16:44,折线图展示的是16:00-16:59的数据。因此这部分数据就是我们讨论的产品中的实时数据。

百度统计-应用概况演示demo

01 什么是实时数据

为什么在百度统计的案例中,我们说“今日启动用户数”是“实时数据”,而“昨日启动用户数”不是呢?

当我们在16:44打开百度统计时,“昨日启动用户数”和“今日启动用户数”是怎么得到的?让我们来一起看下这两个字段数据的产生过程。

“昨日启动用户数”是我们在当前时间段请求服务器呈现出来的数据,事实上数据已经在数据库的表中存在,是事先在一定的时间节点由服务器统计计算的(例如每晚24:00开始计算前一日的数据)而“今日启动用户数”是在16:44请求服务器计算出来今日0:00-16:44启动的用户数量和,这个数据是立即计算的,不同时间段登陆看到的数据是不一样的

由此我们可以发现,实时数据是当下计算的,是指某事发生、发展过程中的同一时间中所得信息的载体,即表达了最新的情况,是当下情况在数据层面的一个反应。实时数据适用于对数据时效性要求很高的场景:

用户行为依赖于当下数据的直接反馈,在金融市场特别常见,例如软件的交易行情,场内etf的买卖,银行的汇率兑换。用户“买入”还是“卖出”的行为,需要根据当下最新的价格进行决策日常生活中数据监控和预警,实时数据也常常被用于预警,因为预警所对应的事件具有一定的危险性和破坏性,不允许数据出现滞后性,例如化学罐区,化学品的实时温度预警特定日期比如重大节日或者日期对业务数据的跟踪,例如双十一商家数据大屏销售额跟踪02 实时数据存在的负面因素

实时数据可以获得当下最真实情况的反应,对反应当下情况有重大意义,那么为什么我们不把所有的数据的统计都做到和当前时间同步呢,因为实时数据也存在一些负面因素,主要是以下3个原因:

实时数据对服务器的计算压力更大,成本更高。其一,实时数据需要每次根据当前时间段来计算数据,假如有100个用户分不同的时间段访问我们的产品,实时数据就需要我们计算100次;其二,实时数据要求计算返回结果快,因为是当下情况的反应,实时数据如果出现延时现象会给用户带来负面情绪,而要求快速计算出结果,一旦数据量增加,就需要我们配置更多的服务器和机器,增加了成本大部分字段统计实时数据的必要性低,除了一些特殊场景,例如实时交易,异常预警监控等。我们对绝大多数字段的更新要求没有到达实时(秒级/毫秒级)的必要性,例如“销售额”这一字段,对于用户来说,并没有必要了解到秒级变化的销售额一些字段的实时统计没有意义。例如在电商交易中,“询单转化率”字段的实时统计就没有意义,因为客户和客服的询单过程是一个时间段过程,存在跨小时跨天的可能,统计实时询单转化率就没有意义了03 实时数据的延时性

从实时数据的负面因素1中,我们可以分析出当数据量过大,而软硬件配置更不上时,实时数据会出现一个延时现象,延时性会给用户带来负面情绪和一定的损失。

例如小明对在港股上市的公司A进行投资,但是因为软件所展示的行情数据是延时15分钟的,那么会让小明无法得知最新的波动情况做出买卖决策。

对于实时数据的延时性问题,我们有什么解决办法呢?

从根本上来说,增加足够的服务器和机器配置,就能解决实时数据的延时性问题但是每个项目的成本并不是无限的,现实生活中往往会存在成本限制的问题,这就需要我们对统计字段和用户进行取舍,例如设置用户白名单,在有限的资源下优先保证核心用户的实时数据更新;配置统计字段优先级,优先保证关键字段的更新同时也可以在产品的用户层面做一些对于用户的友好提示、说明,降低用户的负面情绪

实时数据的延时性这一特征也不只是有负面影响的,合理运用实时数据的延时性,能为我们产品带来积极正面的影响,甚至减少成本。

例如上文中的案例有100个用户分不同的时间段访问我们的产品查询销售额字段,那么我们就需要计算100次,如果考虑“销售额”实时性数据的必要性较弱,适当的延时是能够被用户所接受的,我们就可以这样处理。

在数据库中每隔15分钟计算一次“销售额”,每次用户登陆的时候展示距离当前时间最近的“那个15分钟记录的数据”

之前方案100个用户的成本:服务器计算100次

替换方案100个用户的成本:1小时需要记录4次,24小时需要记录96次

随着用户规模的扩大,计算的次数远小于之前方案计算的次数

上述方案就叫做“定时计算”,通过一定的更新频次和一定的更新时间间隔,通过多次更新来实现数据的相对实时,即让用户从感官上觉得数据的实时性也不错,是对实时数据延时性特征的正面运用

04 总结

简单对实时数据做一个总结:

定义:通过一个缩短更新的时间间隔,增加更新的频次,在一个时间段内多次更新,来实现数据的实时展示表达意义:实时数据表达了最新的情况,是当下或者靠近当下的情况在数据层面的反应适用场景:适用于对数据时效性要求很高的场景,包括用户行为需要当下数据的直接反馈(例如:金融市场买卖交易);关键数据和节点的监控(例如:日常一些关键业务指标跟踪和预警);重大活动或节日的数据跟踪(例如:双十一商家数据大屏销售情况跟踪)意义:帮助商家或用户,比较及时的了解相关指标最新的一个变化情况,为用户行为提供数据支持存在缺陷:获取成本相关较高;当因接口等原因导致数据无法及时更新时,会给用户带来实时数据更新慢更新不及时等感觉,导致用户体验较差,引发用户不好的情绪

通过本文的分析,对实时数据有了一个简单的了解,知道其适用的场景以及存在的负面因素。在设计产品时,合理的运用“实时数据”,会为我们的产品带来更多的价值。

本文由 @晌午 原创发布于人人都是产品经理,未经作者许可,禁止转载。

题图来自Unsplash,基于CC0协议。