b2b行业 数据分析该怎么做 「市场数据分析怎么做」
今天给大家普及一下b2b行业 数据分析该怎么做 「市场数据分析怎么做」相关知识,最近很多在问b2b行业 数据分析该怎么做 「市场数据分析怎么做」,希望能帮助到您。
很多同学很困惑:B2B类分析该怎么做!!!网上到处都是零售电商的例子,可这都是B2C类业务啊。当然还有一些同学连B2B和B2C都分不清楚,只是感觉到:我这个数据很奇怪,该怎么分析?今天系统解答一下。
一、B2B和B2C的直观区别一个典型B2C场景
一个典型B2C场景:
小明想喝奶茶,走到一家奶茶店
小明:奶茶多少钱一杯?
店员:15元
小明:好,买一杯。
小明扫码付款
小明:真好喝!我再买一杯
如果用B2C思路套B2B,就是这画风:
小明想开家奶茶店,走到一奶茶店门口
小明:奶茶店全部转让给我多少钱?
老板:50万
小明:好,买一间
小明把一麻袋钞票甩到老板脸上
小明:这店真好,我再买2间!
小明又甩一麻袋钞票出来……
是不是看着很搞笑,真实的B2B场景是:
小明写代码到35,年纪太大被辞退。
想着打工却发现到处都是:“限年龄35以下”
咋办呢?发现一个《加盟奶茶店月入百万轻松当老板》的广告。
于是,思前想后,看了又看,算计5天;联系加盟商,扯淡5天;又联系另一个加盟商,扯淡5天;双联系另一个加盟商,扯淡5天;和朋友讨论喝酒撸串5天;到知乎发帖子,看评论5天;找老婆要钱,吵架下跪5天;找爹妈要钱,发飙谈心5天;“这辈子我就雄起这一次!”怒吼5天……
光为了凑齐那一麻袋钱,小明已经经历了人生风起云涌大起大落,内心已是沧海桑田。还不说后边的加盟、装修、招聘、引流、卖货、生意不好、垂死挣扎、破产、报名21天0基础前端培训月入五万班、待业……
哪像买杯奶茶,想买就买,多轻松!金额大、流程长、决策多,就是B2B业务和B2C业务的直观区别。(故事纯属虚构,如有雷同纯属贩卖焦虑的公众号文章太多)。
二、B2B的业务特点B2B业务不同于B2C,主要区别点有三个
1. 服务于个人需求 VS 服务于经营目标B2C的业务,大多服务个人消费需求,大部分是生活必须品。比如个人买牛奶,只需要考虑“这个好不好喝”就行了。
B2B业务,服务的是企业经营目标。同样是买牛奶,如果是拿牛奶当原料。就得考虑“我做出的奶制品是不是能卖出去,帮我赚利润”如果是拿来给员工喝,那就得考虑“是不是员工喜欢这个,会不会被投诉”。
这是B2B和B2C最本质区别。我们想理解B2C业务,往往假设自己是消费者,体验一把流程。可想理解B2B的业务,你是无法假设自己是消费者的,得站在经营者的角度去思考。不然,就会闹出开头“扛着一麻袋钱去买奶茶店”的笑话。
2. 简单决策 VS 复杂决策B2C是个人消费,所以自己拿主意就好了。可到了B2B完全不一样,决策成员非常多。
想采购牛奶,还得走招标流程,还得走财务流程,还得走物流流程,还得走仓库管理流程,还得送各级领导同意。如果是小企业也就算了,大企业里敢省一个流程,分分钟审计怼上门来……
3. 货到付款 VS 售后服务B2C是个人消费,一手交钱一手交货。可B2B往往复杂得多,签约只是第一步。后续交付还有首款、中期款、尾款各种麻烦。
前边举的买牛奶,已经是最简单的形式了。如果是陈老师所处的软件开发服务行业,来感受下,这漫长的的从签约到交付过程(如下图)。
4. 重复购买 VS 合作伙伴B2C是个人消费,买的东西便宜,完全不纠结。比如买牛奶,不好喝下次换个牌子就是了。对企业而言,用户今天跑了,明天我打个折可能就回来了。
但B2B完全不同,如果签的是年度合作协议,那一但丢掉客户,就是一整年颗粒无收。如果客户签的是3-5年长期合作,那一但丢掉就可能3、5年不再来往。反之,如果是行业领军客户,一但拿下,整个行业的订单都能被我吃个七七八八,B2B就是这么赢者通吃。
所以一定要类比,可以把B2B业务,比作装修房子这类B2C业务,同样是采购金额大、决策流程长、决策机制复杂、首款尾款、交付过程长、一但采购完成就需求关闭(不过还体现出不少数大客户的营销)。
陈老师还是强烈建议,做B2B分析多花心思去了解业务细节。因为很多业务流程也会随着客户需求变更、定制,打比方只适合教学,不适合工作。
三、B2B的基本分析框架所有的数据分析,都绕不开是多少、是什么、为什么、会怎样、又如何这五件事。B2B的分析也是如此,只是B2B的分析,会在是多少上花格外多的精力。
一来,B2B采购本身涉及的客户组织架构、决策流程、工作流程特别复杂,需要额外信息;二来,客户单个价值大,一但失去后果严重,不存在重复做试验的空间,每一个客户都得努力争取;三来,客户不会高频次采购,一但形成关系难以更改,因此所以不像B2C,没有客户信息可以慢慢收,不了解客户需求可以慢慢Abtest,不能拿着RFM数据推测未来(大部分R)365天,F=1)。B2B要的就是精准打击,一击致命。具体的细化需求,有三部分:
1. 客户画像直接上图,B2B的客户画像,更多从客户企业实力、需求规模、流程长度、谈判对象这些角度进行。和B2C不同的是,B2B的客户画像采集难度更低,往往这些企业相关的信息都可以通过客户拜访、企业年报、行业报道、相关企业介绍等渠道获得。
特别是一线销售,对此非常清楚(愿不愿意告诉公司,是另一回事)。完全不用担心“窃取个人隐私”等问题。
在用户画像的使用方法上,也有不同。B2C卖的很多都是必需品,用户是一定有需求的。问题是:哪一品牌、哪一Sku、哪一价格有需求。因此,B2C用户画像本质,是筛选特定产品的高响应率用户。
B2B如果客户没需求,真的就没有了。如何判断B2B客户的需求?一来,可以从客户经营情况、企业规模、发展走势来判断。比如企业进生产原料,肯定订货额和自身销售额成正比。比如卖软件,一个千万级企业不需要ERP,上亿了就得上了。二来,可以从客户与我们的关系来判断。B2B领域存在大量灰色操作,这也是常见的事了。
2. 跟进流程需要注意的是,B2B采购需求一但发出,就进入倒计时阶段。客户不会无限期做甄选,需求发出越久,客户见识的供应商越多,成交几率越高,筛选的也越具体。因此收到销售线索后,判断该线索所处时间段,第一时间跟进,是非常重要的。
跟进销售线索的过程是复杂的。对于步骤超过2的流程分析,都可以用漏斗分析法。B2B在售前阶段,跟进流程分析的基本思路也是漏斗分析法。跟进流程核心就是签约,因此,针对单一线索,要关注跟进到了哪一阶段,具体失败原因(如下图)。
针对众多线索,则要分门别类,看不同地区、行业、企业、线索来源的签约率&签约金额,从而针对性制定计划,看我们要打哪些地区,哪些特殊企业类型,从一个行业签约情况变化中发现问题(如下图)。
3. 售后服务直接上图,B2B的售后流程也是分阶段的,但不用漏斗分析法。因为售后阶段原则上不允许回不了款!死,也得把钱死回来!因此B2B售后流程分析,更多是提示风险,预计问题,关注进度。
四、B2B的分析难点难点一:对客户信息缺少采集、整理客户信息除了一个企业名字一个电话就没了,连接电话的人是什么职位都不知道,企业的其他信息也不清楚。最过分的,连客户信息的来源地点,来源时间都不清楚。人家客户的需求都关闭了,还傻乎乎的找上门问……最后结果自然凄惨无比,数据分析也无从分析。
难点二:对跟进流程缺少采集、整理这里有两种常见情况:
一种是销售们根本懒得记录:什么时候跟、跟进了谁、跟进反馈如何、下一轮跟什么,一无所知。第二种是销售们为了应付检查,突击跟进。要求3天内打电话联系客户,就在第三天突击打完。要求填写信息,就在月底检查前一天突击写完,最后提交的数据都是垃圾。难点三:对售后情况缺少采集、整理售后都忙着交付呢,鬼有心思反馈数据……
是滴,B2B分析的最大难点就是:没数据。什么都没有,只记录了签约那一刻的简单数据,然后理所当然的以为,只拿这么一点点数据,就能分析出各种问题。
你让其他部门配合,他们有一堆理由:
销售:我开发的客户是我的资源!凭什么交给公司!市场:什么信息都全了,岂不暴露我做的获客都是垃圾!售后:已经累的灰头土脸了,交货重要还是交数重要!本质上,是B2B业务管理不规范导致的。因为B2B流程长、细节多,所以需要大量人力参与。因为人力参与多,就存在大量需要强化管理的地方。在过去20年跑马圈地式经济发展中,大部分企业没有建立完善流程,甚至把无知当个性,把各种灰色操作当合理。以致于到了2019年,B2B业务管理还停在原始阶段,自然没有可靠的数据,也没有有效的分析了。
当然,还有一小部分责任,来自小白数据分析师们。他们最爱说的就是:“我看网上的教程,不都是用RFM模型 k均值聚类吗,我只要把签约额 客户名称丢到里边一聚……诶?为啥这结果看起来这么奇怪?群里有没有大佬?有没有B2B行业的大佬?B2B行业里Kmean聚类、最权威、科学、合理的分类数,是4还是6?急!在线等!可付费!”
——不去结合具体业务流程,天天就指望上网抄一个通用、权威、常见的做法,这要能符合公司情况就见鬼了。
五、结语以上就是B2B分析基本思路。请注意,B2B本身也是一个巨大范畴,根据:
产品特点:卖原材料、卖产品、卖服务……销售模式:业务团队、电话、平台……行业特点:建筑、金融、五金、耗材、软件……还能细分出很多类型,具体的场景还有很多差异。一篇文章肯定不能面面俱到。
这里先做个科普,让大家感受一下两种思维模式的差别。
本文由 @接地气的陈老师 原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议