互联网进入商业化时代「互联网商业化」
今天给大家普及一下互联网进入商业化时代「互联网商业化」相关知识,最近很多在问互联网进入商业化时代「互联网商业化」,希望能帮助到您。
编辑导语:商业化产品和用户产品是产品经理的两大方向,两者的产品逻辑有着明显的差异。本文作者结合自身工作经历,以什么是产品商业化内容为切入点,由此深入分析梳理了互联网产品商业化的基本逻辑,与你分享。
商业化产品和用户产品是产品经理的两大方向,两者的产品逻辑有着明显差异。本人曾有幸在近亿日活的产品先后做过用户侧和商业化侧的工作。用户产品的一些方法论,社区里讲的比较多了,在此结合个人工作经验,梳理一下互联网产品商业化的基本逻辑,希望大家看完后能有所收获。
一、什么是产品商业化商业化的本质就是流量的变现。一般而言,做一款产品的最终目的都是为了赚钱。产品提供产品价值吸引用户,同时也希望将用户流量变现,这是一种交换关系。许多用户不喜欢商业化,从个人体验来看无可厚非,但是从可持续性的角度来说是不合理的。只有有利可图,企业才有动力做出好产品。
产品商业化的基本模式包括广告、电商、游戏、直播等,其中广告是最为主流的商业化模式。
这里以抖音、快手为例,2019年,抖音的广告收入占比约为80%,快手则相对较低,广告收入占比为27%。
但是两年过去了,根据快手发布的2021一季度财报,快手一季度广告收入为 86 亿元人民币,占比已经上升到50.3%,这个变化是值得关注的。
另外和大家常识可能不太相符的是:拼多多的广告收入占其总收入的80%左右,而电商的收入不到20%。
当然,产品商业化的程度和其生命周期以及公司核心战略相关。
一般而言,在引入期和成长期,产品的核心目标是打磨用户体验,快速的拉新增长,这时不宜做过度的商业化。但是在成熟期,产品最需要关注的指标就是变现和留存(做变现是为了提升ARPU值,做留存是为了延长用户生命周期,单用户价值 = ARPU值 * 生命周期)。当然,市场上还是存在一部分小而美的成熟公司,商业化程度相对克制一些(如豆瓣),这是比较少见的(创始人的态度,外加没有上市压力)。
二、广告的基本逻辑正如我们上文所说,对于大部分互联网产品,广告都是最主要的商业化变现模式。
这里我们先简单讲下广告的基本逻辑:
1. 广告的基本分类广告有多种分类维度,如广告目的、展现形式、计费方式等,这里只从广告目的出发,讲一讲品牌广告和效果广告。品牌广告的目的是通过大量的曝光增强品牌心智,基本的承载形式是开屏广告和头图;效果广告的目的是吸引点击,产生消费或转化,基本的承载形式是信息流广告。
2. 互联网广告的发展历程互联网广告的发展历程大体可以分为三个阶段(总体而言,广告的不同呈现形式是由技术的发展决定的,伴随着互联网产品的变迁而变迁),分别是:
门户网站广告,基本的承载形式是banner和文字链(参见网易)。搜索广告,基本的承载形式的query词购买和联想广告(参见百度)。信息流广告,基本承载形式是图文、视频、topview等(参见今日头条)。3. 广告的计费方式计费方式也是划分广告类型的一种特征,不同的计费方式往往反映着广告主的不同诉求,目前市场上主要的计费方式如下:
按千次展示付费(Cost per Mille,CPM):即按照千次展示结算。这种方式是媒体与广告主约定好千次展示的计费标准,至于这些展示是否能够带来相应的收益,需要由广告主来评估。大多数的开屏广告、片头广告等,都是这种计费方式。按点击付费(Cost per Click, CPC):即按点击结算,用户产生一次点击,对广告主实时扣费,cpc结算在在效果类广告市场中具有接近垄断的地位。按转化付费(Cost-per-Action):根据广告最终投放的效果,即回应或激活的数量收费,而不是广告的投放量。按转化付费,其中,cpd(cost – per- download)是cpa计费的一种重要方式。按时间付费(cost per time)结算,这是针对大品牌广告主特定的广告活动,将某个广告位以独占式方式交给某广告主,并按独占的时间段收取费用的方式,这类大广告主财大气粗,其中多数传统采买都是按天结算(CPD,Cost-per-Day)的。三、现代广告的基本形式 —— 计算广告1. 广告的参与主体和计算广告的由来了解了广告的基本概念,给大家分享一下目前互联网广告的新形态 —— 计算广告。
广告是种自古有之的交易模式,这种交易模式下由三个主体,分别是需求方(广告主)、供给方(媒体侧),和受众,这三个主体有各自的诉求,三者的利益博弈推动了广告活动的向前发展。
广告主的诉求:希望能找到最有价值的目标用户,在固定广告预算下获得最大收益。广告界里有一个哥德巴赫猜想,“我知道我的广告费有一半都被浪费掉,但就是不知道哪一半。”这是广告主最大的痛点。媒体侧的诉求:待价而沽,现有的流量如何卖出最高的价钱?对于用户:如果广告无可避免,请给我最有价值(如时效性强、相关性强)的广告。因此,用数学的方式来表达,我们进行广告活动,实际上就是期望:
这里的i代表从第1次到第T次之间的某一次广告展示。核心目标就是最大化T次展示上的总收入(r)与总成本(q)的差,即广告活动的利润。根据我们上文所说的三个主体(a —广告主 , u — 用户,c — 广告主),可以进一步细化公式,如下:
这个公式很简单、也很优雅,但是这个最优解问题在过去很难解决。
随着数据科学的发展,尤其是定向技术和计算交易的出现,一切才成为可能。
2. 计算广告的基本流程这里为了便于大家理解,我不直接讲机械的广告计算流程,而是以QQ浏览器为例,讲述一个信息流广告如何产生的全过程。
可以看到,当我打开QQ浏览器时,首次刷新的第5位是唯品会的广告,恰好我最近有买衣服的需求,点击了该广告,QQ浏览器以deeplink的形式拉起了唯品会,我在唯品会里进行了浏览消费。
上述过程是可见的,也只是冰山一角。
那么冰山下的的整体流程是怎么样的呢?
首先,当我浏览QQ浏览器时,QQ浏览器的客户端会向其广告服务端发起广告请求,发起广告请求的同时会携带大量的用户信息参数(主要包括用户画像数据、设备信息、用户行为数据、场景数据、广告位数据等)。广告服务端将上述数据透传至SSP(SSP就是所谓的供给方的平台,ssp连接着不同的媒体,做统一的流量分配),SSP再将数据上传至ADX平台(ADX就是所谓的广告交易平台)。ADX平台是供给方(SSP)和需求方(DSP,需求方平台,大大小小广告主所在的平台)的交易平台,将SSP发起的广告展示请求和DSP发起的广告竞价请求进行匹配,完成竞价。完成竞价后,将获胜的广告主素材以及相关信息参数下发给QQ浏览器服务端,服务端再透传给客户端,完成广告展示。当用户点击时,客户端对广告监测链接中的部分参数进行宏替换,作为监测付费的依据。整个竞价流程有几个关键点,如下:
1)用户信息
用户信息越多、越全。定向的准确性就越高,这就是为什么腾讯的广点通、头条的穿山甲计算效率那么高,因为他们有海量的用户数据(想想你手机里有多少腾讯系的app?),并整合多方数据源,形成了一套完整的用户标签体系(DMP,数据管理平台)。
2)关于SSP和DSP
SSP和DSP都是平台性质的产物,对于大公司而言,旗下的媒体众多,为了统一管理流量,增加计算效率,往往会建立供给方平台;而对于广告主而言,加入DSP平台也能有机会获得更多优质的流量,这两者的核心目标都是为了提升效率。
3)关于ADX竞价机制
不同的广告主在ADX进行竞价,这里ADX会计算不同广告的千次展示期望收入(expected Cost Per Mille, eCPM)作为衡量指标。ecpm高者得到本次广告曝光的机会。
eCPM= 预估点击率*点击价值
点击价值(click value),即单次点击为广告产品带来的收益。在CPC结算的广告产品中,eCPM可以表示成点击率和出价的乘积:
ecpm = CTR * bidCPC
该公式同时考虑了点击率和广告主的出价这两大变量,避免出现广告主出价虽高,赢得了竞价,但是无人点击,媒体也没有收入的窘况。
这种计算方式是由google率先发明的。
我们继续拆分,如何精确的计算出ecpm呢?
首先,广告主的出价是已知的东西,问题就转换为如何获得精确的预估点击率——这就属于机器学习的预测问题。通过获取广告特征和用户特征,进行特征工程和模型训练,最终能达到根据特定的特征算出对应的预估点击率的效果。这里大家可以参考科大讯飞预测点击率的比赛代码,贴上冠军大佬知乎文章和的github:
https://zhuanlan.zhihu.com/p/47807544
https://github.com/bettenW/2018-iFLYTEK-Marketing-Algorithms-Competition-Finals-Rank1/blob/master/README.md
四、互联网广告的优化逻辑最后一部分,我们讲一讲互联网广告的优化逻辑,这也是日常工作中涉及最多的部分,大多情况我们不需要从0开始造轮子,而是在已有的体系上不断优化。
广告的优化分为两个方面,分别是广告收入优化和广告体验。
收入不必多说,这里值得注意的是体验——只有保证一定的广告体验,才能可持续的发展,而不是竭泽而渔。
1. 广告收入优化首先要拆解收入,这里以信息流广告为例(其他广告的计算方式和信息流广告大同小异):
广告收入 = 广告曝光 * 点击率 * 点击单价
继续拆分:
广告曝光 = 产品日活 * 人均刷次 * 每刷次广告条数 *pvr(每刷广告请求率) * 广告返回率 *曝光率
综上,可得:
广告收入 = 产品日活 * 人均刷次 *每刷次广告条数 *pvr(每刷广告请求率) * 广告返回率 *曝光率 *点击率* 点击单价
这确实是一个很复杂的公式。想要优化收入,就要从公式的各个变量入手,整条链路逐一优化。
要说明的是:拆分漏斗的思维是互联网最重要的思维之一,相比大家有所体会。
先来看产品日活和人均刷次,这个需要产品侧不断优化,提升日货和用户的消费数据,这里不加赘述,这是用户产品的课题。每刷次广告条数是指用户刷新一次最多能出几条广告,这个值直接决定产品的adload,需要媒体侧和商业化侧达成一致。PVR 和 竞价返回率,PVR是每刷次的广告请求率,这个值要尽量逼近100%,如果PVR较低,可能是广告请求的时机存在问题。竞价返回率是指媒体侧发出广告请求后,能竞价成功获得广告返回的概率。竞价返回率是由媒体侧的流量价值和广告主数量共同决定的,一般而言,流量价值短时期内不太会发生变化,所以需要引入更多的广告主,接入第三方DSP等。曝光率,曝光率是指成功返回的广告中有多少成功曝光了,曝光率与广告素材的加载时间,广告位置相关。比较通用的技巧就是对广告素材,尤其是视频类的广告素材做预加载,或者提升广告位置。点击率,点击率反映了广告素材对用户的吸引程度,除了提升定向准确性之外,还需要优化广告素材,创新广告形式(如按钮动效、topview形式)等,广告素材优化有单独的一个领域。CPC,CPC就是广告主出价,广告主的出价对产品而言是个黑盒,但是可以明确和后向的转化链路有关,即广告 “曝光 → 点击 → 下载 → 安装 → 激活”全链路。后向的转化率越高,广告主的出价也就越好。比如说针对下载成功率优化,首先可以分析下载错误代码,确定失败原因,通过断点续传优化、预约下载解决网络问题;通过引导用户空间清理解决空间大小不足的问;通过缩小安装包体、双wifi加速等方案解决下载时间过长的问题。2. 广告体验优化广告体验也是产品商业化必须关注的另一层面,因为体验往往是个主观的东西,所以首先需要找到可以量化体验的指标,这样后续的优化才可衡量。
关于广告体验,主要关注如下指标:
1)adload
首先是adload。
adload = 广告曝光 / (广告曝光 内容曝光)
如果adload过高,用户就会觉得整个产品充斥着广告,一般而言,adload维持在10%是比较合理的,当然同时也要参考竞品的情况。
2)广告质量
和内容一样,针对广告素材也必须要有完整的审核体系,从广告主、广告标题、广告文案、广告素材、广告样式等不同指标进行打分,将广告划分为S级、A级、B级、C级等不同等级,监控整体曝光中不同等级广告的曝光占比,就能对整体的广告质量心中有数。
3)广告重复度
重复广告也是用户经常吐槽的点,想象一下,当你使用一款产品时,所有广告都是抖音,这绝对会让你抓狂。而且如果用户已经看到了一个广告而未点击,你给他大量推送相同广告大概率也不会点击,从效率上来说也是不合适的。
关于定义重复广告,广告重复度从高到底有三个维度,首先是相同广告,即广告素材完全一致;其次是相似广告,即同一广告主,但是素材不一样;最后是同行业的广告,比如抖音和快手,都属于短视频行业。
一般而言,在用户一个刷次内不能出现相同广告,一个session内不能出现相似广告,至于同行业广告,因为现在广告主市场头部效应很明显,财大气粗的就那几家,所以较难控制。
商业化产品需要配合算法同学,基于频控策略、相似性模型解决问题
4)用户负反馈率
一般而言,广告都会有负反馈的按钮,只有用户对广告非常不满意才会点击,因此负反馈率是红线指标,而对于那些点了负反馈的用户,应当少出广告,甚至是在一段时间内不出广告,否则很容易流失。
以上就是互联网产品商业化的一些基本逻辑,包括广告的基本概念、计算广告的流程以及广告的优化思路,篇幅所限,整体内容相对简单,大家如果对产品商业化感兴趣,可以详细阅读参考文献中的书籍。
参考文献:
《抖音vs快手深度复盘与前瞻 ——短视频130页分析框架》 方正证券《国内互联网公司全年广告营收情况》中国18大互联网公司广告收入榜(2020年全年)丨Morketing榜单《计算广告- 互联网商业变现的市场与技术》 刘鹏《程序化广告实战》吴俊《程序化广告 – 个性化精准投放实用手册》梁丽丽本文由 @carmanzzz 原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Pexels,基于CC0协议